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Methods of mathematical modeling of heat-exchange processes in the human body are used
in various problems in the fields of medicine, pbysiology, athletics, the garment industry,
and in the design of survival systems. Mathematical models describing the thermal states
of the human body as a whole or its separate organs have been worked out in a large number -
of papers, starting from the 1940s. With the development of modern computational techniques
and the more detailed physiological information available in recent years, the mathematical
models have become more refined and more complex. With the help of numerical methods, com-
plex models taking into account the anatomical structure of the body, different heat-trans-
- port mechanisms, and the effect of the thermoregulatory system can be worked out. In the
present paper, we review the literature, discuss methods of constructing mathematical mo-
dels, and present the application of the multistage modeling method in the analysis of the
temperature field in the human body.

There are two main approaches in conséructing mathematical models of the human body; the
lumped parameter models and the distributed parameter models [1-3]. .

The lumped parameter models are represented by systems of ordinary differential equa-
tions for the average temperatures of different regions of the body, which are obtained
from the heat-balance equations for each region. In distributed parameter models, partial
differential equations describing the spatial temperature distribution are used.

It will be convenient to begin the review of the literature with a discussion of the
lumped and distributed parameter models in general. Then using these two approaches, we
describe the features of other widely used models.

Lumped Parameter Models. In this approach, the human body is divided into N elements.
The thermal state of each element will be characterized by the volume-averaged temperatures
of the tissues T, and blood (T4, Tyi) in arteries and veins.

We consider the derivation of the equations of the lumped parameter model, emphasizing
the methods of obtaining the average temperatures, the assumptions made, and the physical
interpretation of the parameters. Let an element of the system occupy a volume Vi, where
part of its surface S} is in contact with other elements, and part S] borders on the ex-
ternal medium. Arterial and venous blood flows into element i from neighboring elements.
Part of the arterial blocod flows through the capillary network of element i and is trans-
formed into venocus blood.

The change in the tissue enthalpy is given by the sum of the conductive heat fluxes
Qi4 from neighboring elements, the heat flux from the external medium Qnj, the fluxes Qg4
an% Qyi resulting from heat exchange with the arterial and venous blood, the heat flux
Qi transmitted to the capillary blood, and the heat Qyj liberated from exchange processes
[1, 4-6].

dT; '
C; d—rl = Qij + Qm+ Qui + Qvi + Qu + Qus;- 1)

The adequacy of model (1) will be determined by the accuracy of the approximate expres-
sions coupling the thermal fluxes in (1) with the averaged tissue and blood temperatures
(Ti, Ta4s Tvi) used as the input.

The conductive heat flux between elements i and j, passing through their common bound-
ary, is normally given in terms of the thermal conductivity tensor 013 [1, 7, 81:
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Qij = 0;;(T; —T)). (2)

Note that the thermal conductivity defined in (2) depends on the temperature distribu-
tion in the body, i.e., it ig a system parameter. This complication is tacitly avoided in
the literature, where 0ij is calculated from formulas for planme or cylindrical walls without
taking into account blood flow and internal heat sources. ‘

In determining the heat transport to the external medium, besides convection and radia-
tion one must take into account the component of the heat flux Q.4 caused by evaporation
from the surface of the skin and the respiratory tracks; the latter can vary under the action
of the thermoregulatory system. ’

The heat fluxes transmitted by arterial and venous blood are given by the expressions
[1, 2, 9]: ‘

Qai = 0a; T —T3), Ty =0y (Ty;—T)).
_ (3)

The basic difficulty in describing heat-exchange processes with the arterial and venous
blood is the determination of the thermal conductivities o0,; and Oyj. In order to determine
these paramevers quantitatively, one uses a model representation of the vascular system of
the portion of the body under consideration, and considers the heat-exchange problem for
this model system. Because the volume-averaged temperature Ty of the tissue appears in (3,
and not the temperature averaged over the walls of the blood vessels, it is necessary in the
calculation of the heat conductivities to take into account boundary layer drag in the blood
vessels, as well as drag effects of the tissue between different blood vessels.

A theoretical analysis of the heat transport in blood vessels was given in [10] in which
the velocity and temperature distributions were calculated for different boundary conditions
on the blood vessel walls and the local Nusselt number dependence was obtained. In [11] the
heat exchange between blood vessels and the adjacent tissue was considered for three cases:

a single blood vessel, two parallel blood vessels with opposite flows, and a single vessel
near the skin. - However, these results still do not permit a correct theoretical determina-
tion of the conductivities c,4 and Oy,

.In writing an expression for the heat flux Qyy transmitted in the capillary system [1-9],
the assumption is made that heat exchange in the capillary system is ideal. It is then
assumed that the blood entering the capillary has temperature T,;, and after passing through
the capillary takes on temperature Ti of the tissue. The resulting expression for Q4 is

Qui = Gy, (Tas — T). (4)

Substituting the above expressions for the heat fluxes into the heat-balance equation (0,
we obtain ’ ' :

dT;
C; e 2 055 (T —T3) =+ 0o; (T — T2) + Qo + 0ai (Taz — Ti) + 0vi (Tvi — T3) + Gty (T — T3) + Qs (5)
] ] .

The heat-balance equation for arterial blood in the i-th element can be written in the

CypMai dgai = Oy (Ti — Tai):—{-— o'av(Tvi _— Tai) - Gb [G;? T;?'— GxiTai - (G;l,n— Gm) T:‘Ut]y (6)
T .

and the corresponding equation for the venous blood is similar, where we use the fact that
the venous blood leaving the i-th element is a combination of the venous blood entering the
other elements, along with the blood passing through the capillary system with temperature
T,:

i

dTyy ‘ ‘ in_in i
Ok d‘;‘ — 03 (T — Tt ) + 0av(Tas — Ft) + Gy [Gos Tog + GuaT's — (Gop -+ Gua) Tog - (7

The mean flow rate temperatures of the incoming arterial and venous flows (Ti?, T%?)

are calculated by averaging the temperatures of the flows from the j-th element to the
i-th:
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in 1 \ out in

Twi = —3x }_,an'ani » Glm' = 2 Gnyjy n=a, Va (8)
ni i

In order to close the system of equations (5)-(8) it is necessary to add a relation be-

tween the blood temperatures T T;?, and TS“F This can be done by introducing a variation

ni’ i
factor for the blood flows

out

11im’ = (Tni “Tiz?)/(Tm "'T:zl;.'i), n=ua V.

The quantities ¥,4 and ¥y are determined by adopting a model for the vascular system
of element i and calculating the change in blood temperature for motion along the blood ves-
sels. However, this is a separate (and complicated) problem. In the literature the non-
uniformity of the blood temperature field is not considered. Instead, it is assumed in [1-9]

that ngt = Tpy» M = a, v (the ideal mixing model).

The system of equations (5)~(8) represents a generalized model of a biological system
with lumped parameters. A program for this model was developed in [12] for a system where
the number of elements, heat couplings, and fluxes can be chosen arbitrarily. The structure
of the specific system is taken as input information, given in extremely compact form. There-
fore, the program makes it possible to calculate results rising different lumped parameter
models.

Distributed Parameter Models. The human body is represented as a complex nonuniform
system, consisting of different types of tissue permeated by a network of blood vessels of
different diameters and distributed in space in a complicated way. In the calculation of
the spatial temperature field in biological systems, a quasihomogeneous model of the body
is used in which the thermal state is described with the help of locally uniform temperature
fields for the tissues and blood. The locally averaged temperature T(x) at the point x is
understood to mean an average over a volume AV around point x which is small in comparison
to the size of the system, and yet is larger than the size of the nonuniformities.

The mathematical model of a quasihomogeneous body will consist of a system of differen-
tial equations which are derived assuming that the heat exchange between tissue and blood
occurs at every point of the volume and can be characterized by a density of heat sources
(sinks). The heat sources are specified with the help of the introduction of local volu-
metric coefficients of heat transport to the arterial «, and venous @, blood. For the heat
exchange with blood passing through the capillaries, it is assumed that each point of the
arterial blood passing through the capillaries (with mass flow rate per unit volume G) takes
the local tissue temperature T(x). Then the differential equation describing heat transport
in the tissues can be wrjitten in the form [1-3, 9, 13-16]:

2021 =y (T — G, (T — T — oo (T —T2) — oty (T —T,) + g )

In addition to (9), a mathematical model of the distributed parameter system must in-
clude equations describing heat tramsport by arterial and venous blood. However, we have not
seen any treatments in the literature which consider spatial temperature distributions for
the blood Ta(x) and Ty(x). Instead, volume-averaged blood temperatures T,y and T . are used
in (9). These temperatures are determined by considering balance equations of the type (6)
or (7) in which the heat flux from the tissues to the blood is given by [1, 9, 16]:

In most papers it is assumed that the heat exchange in arteries and veins can be ignored
in comparison to the capillary heat exchange [2-8, 14, 15]. Until entering the capillary,
the arterial blood at any point of the body is assumed to have the temperature of blood leav-
ing the heart. After passing through the capillaries the blood does not participate in heat
exchange as it moves along the veins, therefore the temperature of blood feeding into a small
circulation loop is equal to the mean flow rate temperature of blood leaving the capillary.
With these assumptions, the mathematical model simplifies and we have

aT . |
o0 —— = VT — Gog, (T —T2) + g (11)
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Fig. 1. Schematic diagram of the thermo~
regulatory system: 1) integrator; 2) heat
production, 3) evaporation; 4) blood flow,
5) body; 6) heat receptors; 7) external
medium; 8) work; 9) set point.

The temperature T, is determined from the heat-balance equation for the heart— lung system
{2-7, 14, 15] with account of the heat loss due to respiration (flux Q,):

GeepTa= Vj GeyyT (X dV —Q, . (12)
: i

Here the summation goes over all elements Vj in which (11) is to be solved.

Thus, we see that the distributed parameter models used in the literature include the
heat-conduction equation for the tissue (9) or (11) and integral forms of the heat-balance
equations (6), (7), (10), or (12) for the blood. In treatments where heat exchange is con-
sidered in separate parts of the body without an analysis of the entire systems, the blood
temperature T, is given a priori.

Thermoregulatory Models. Modern computational techniques have been developed to the
point where we can consider in principle numerical solutions of quite complicated heat-ex-
change models in humans. However, the basic difficulty is the modeling of the thermoregula-
tory system, which can change the parameters effecting the thermal state of the body (blood
flow rate, magnitude of heat liberated, rate of evaporation of moisture). Therefore, in
recent papers there has been continued interest in modeling the thermoregulatory reaction
of the human system under various conditions, and in the adequate description of feedback
in the thermoregulatory system [2-7, 14-23].

A schematic diagram of a possible model [15] of the thermoregulatory system in the
human body is shown in Fig. 1. The body is subjecting to stimulation from the outside
environment and release of heat from physical activity. The stimulation causes changes in
the controlled quantities such as the temperatures and heat fluxes of different parts of the
body which are picked up by the thermoreceptors. The observed quantities are compared with
the reference values (the concept of set point) and the magnitude of the discrepancies de-
termine the action on the system, which is directed to decreasing the discrepancies. Exam-
" ples are changes in heat production (shivering), the intensity of diaphoresis and vasomotor
reactions (constriction and expansion of veins).

In the literature there has been no unified treatment of the role of the thermorecep-
tors in the hypothalmus, skin, and other parts of the body in thermoregulation [17-21]. It
is probable that this situation is due to the extremely large number of different empirical
results describing feedback in the system. Feedback equations describe the coupling be-
tween the deviations of certain characteristic temperatures of the body from their reference
values and the magnitude of the thermoregulatory action on the system. Many papers have
considered the modeling of the thermal system in man under changing external conditionms,
and the development of adequate feedback equations by comparing the calculated results with
experiment [6, 7, 14, 19, 20, 22]. In most papers, controlled parameters are taken to be
the temperature of the brain and the weighted mean temperatures of different parts of the
surface of the body. The most detailed look at the equations of thermoregulation with nu~
merical data necessary for calculations is given in [22],
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Some Models and Their Application. An historical review of the development of heat-
exchange models in man is given in [1, 2]. Extensive bibliographies are also given in [3,
6, 14, 16].

Among the lumped parameter models, the most well known is that of Stolwijk [4, 5]. The
initial model included the following elements: head (brain and scalp), trunk (bones, muscle,
skin), extremities (muscle, skin), and the heart— lung system in which displacement of blood
flow occurs. Further detail was added by using separate elements to model the arms, hands,
legs, feet, and their internal structure (core region, muscle, fat, skin). This model was
used to study the thermoregulatory system behavior in hypothermia under conditions of heavy
physical work and electromagnetic radiation [5, 6, 22]. The model accounts for heat trans-
port by conduction between adjacent layers; the separate parts of the body are coupled toge-
ther by the blood flows and only capillary heat exchange is taken into account.

In [24] the Stolwijk model was used to calculate the thermal state of a human body in
heated clothing.

Lumped parameter models of similar structure were used in a series of papers by Ermakova
[7, 19, 20] to study thermoregulatory mechanisms.

In papers by Korobko [25, 26], lumped parameter models were used to describe the dyna-
mics of the temperature field in artificial hyperthermia (radiation therapy in cancer treat-
ment) with thegoal of obtaining the optimal heating regime. From the specific heat-exchange
conditions (immersion of the body in water) the following elements of the model were separated
out: brain, scalp, neck, core reglon of body, skin, and heart— lung system.

In [8] the dynamical indentification of the lumped parameter model quantities (thermal
conductivities, blood flow rates) was attempted by organized experimental research.

A large number of distributed parameter models have been proposed by Wissler [1, 9, 16].
The most complete model consists of 15 cylinders. The one-dimensional (radial) nomstatiomary
temperature distribution is calculated in the cylinders and the cylinders are coupled by the
blood flows. The system of one-dimensional equations (9) and the balance equations for the
blood (6), (7), (10) are solved. The heat exchange between arteries and veins is taken into
account by introducing counterflow heat exchangers between separate parts of the body. 1In
[16] this model was supplemented by the equations of gas exchange and was used to study the
thermal systems of deep rivers.

The most detailed description of the temperature field in the human body results from the
use of the model of [15]. Kuznetz models the body by 10 cylinders (head, trunk, legs, feet,
arms, hands) with separate layers representing the bones, muscle, fat, and skin. In each
cylinder the two-dimensional form of (11) is considered (depending on the radius r and angle
¢). In the description of heat exchange with the blood, only capillary heat exchange is
taken into account, so that the temperature of the arterial blood is taken to be the same
everywhere and is determined from (12). The problem is numerically solved and has been
applied to the study of the thermal states of cosmonauts (astronauts) working outside the
space capsule in a space unit. The results were compared with experiment, and conditions
where the two-~dimensional treatment is necessary were pointed out.

Distributed parameter models are widely used in the mathematical modeling of cancer
therapy, where the thermal states of separate regions of the body change. In [27-33] the
temperature fields were calculated under absorption of electromagnetic radiation by the
tissues; (11) was considered together with the electromagnetic field equations. In [34-36]
the problem of calculating the states of freezing tissue was examined with the goal of
choosing optimal methods of doing cryosurgical operations. Using the model (11) methods of
regulating the amount of blood flow in different parts of the body according to their
temperatures have been worked out [37, 38], and methods of calculating the process of restora-
tion of skin temperature after local cooling [39, 40]. Equation (11) is the basis of many
methods of measuring the thermophysical properties of living tissue [41-43] and also has been
used to solve scme methodological problems in temperature measurements in the body [44].

We note that in the above solutions, only heat-exchange processes in a limited part of the
body were considered, and the temperature of the incoming blood and the boundary conditions
were supplied from experimental data.

We now discuss multistage modeling methods. In the works cited so far, the thermal
state of the entire organism was described using models without a great deal of detail;
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‘Fig. 2. First stage model. 1) Head; 2) thoracic cavity; 3) peritoneal
cavity; 4) hands; 5) arms; 6) legs; 7) feet; 8-~12) membranes. I) ther-
mal links; II) arterial blood flow; III) venous blood flow,

Fig. 3. Second stage model (thoracic cavity). 1) Aorta; 2) vena cava
inferior; 3) diaphragm; 4) liver; 5) stomach; 6) gallbladder; 7) pan-
creas; 8, 9) right and left kidneys; 10) intestines; 11) membranes; I)
thermal links; II) arterial blood low; III) venous blood flow; IV) por-
tal vein blood.

lumped parameter models using averaged temperatures of different parts of the body, or one-
dimensional distributed parameter models. A more detailed description was considered in [15]
where two-dimensional temperature distributions were calculated for a set of cylinders. Mo~
dels describing the thermal state of the organism as a whole along with the thermoregulatory
system are used in the study of the human body under extreme climatic conditions, high physi-
cal stress, or in the design of survival systems,

In the study of problems involving spatial temperature distributions in separate parts
of the body or organs, distributed parameter models are used having more detail, but consider-
ing only a part of the body isolated from the whole organism. This approach has been used
to solve problems in cryosurgery [34-36], local hyperthermia [27-33], and hypothermia [39,
40], and thermographic diagnostics [45, 46].

There are problems requiring both a high degree of detail in the description of the
thermal states of separate organs and the treatment of the thermal state of the organism
as a whole, including thermoregulatory processes. This type of problem arises in the study
of thermographic diagnostics of the pathology of the internal organs. The problem consists
of establishing connections between the disturbance of physiological processes in the intern-
al organs (changes in heat production or blood flow) and changes in the temperature field
on the surface of the skin opposite to the corresponding organ. With the help of mathematical
modeling, it is pos&ible to examine hypotheses on the causes of changes in the temperature
field for a particular pathology and thus to establish an objective criteria for thermographic
diagnostics.

The problem requires a detailed description of heat-tramsport processes in the surface
tissues in order to model the temperature field of the skin, and also the calculation of heat
exchange in the internal organs for the temperature changes that occur for the pathology un-
der study. In the analysis of the temperature field in a separated region of the body, the
temperatures or heat fluxes from the surrounding parts must be given, as well as the tempera-
ture of the incoming blood flows. This information can only be obtained by preliminary cal-
culation of heat-exchange processes in the entire body. In addition, the calculation of the
temperature fields is complicated by the active thermoregulatory processes. The blood flow
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rates, the magnitudes of internal heat sources, the loss by evaporation are all determined
by the state of the thermoregulatory system. In the feedback equations for the thermoregu-
latory system, the deviations of the temperatures of separate parts of the body from their
reference values appear. Therefore, unlike the case of a passive system, without a prelimi-
nary analysis of the thermal state of the human body as a whole, it is impossible to specify
the effect of other parts of the body on the part under: study, as well as internal effects.

A mathematical model combining a detailed analysis of the temperature distribution and
a description of the thermal state ¢f the entire organism can be constructed using multi-
stage methods [47]. The temperature field is calculated in several stages, where in each
successive stage, the number of elements of the system being considered is decreased and
the degree of detail is increased. The results at a particular stage are used to give the
boundary conditions for the next stage; thus the interaction of the elements is taken into
account.

We consider a possible multistage model for the solution of problems in thermographic
diagnostics. We consider a model with three stages.

In the first stage, the thermal state of the entire organism is described with a lumped
parameter model at the level involving the volume-averaged temperatures of separate parts of
the body and the mean flow rate temperatures of blood flows coupling these parts together.
The output parameters used in further calculations are the temperature of the blood going
into the internal organ and into the peritoneal cavity membrane, and the temperature of the
diaphragm and muscle bounding the peritoneal cavity. The first stage model alsc includes a
mathematical description of the thermoregulatory system. The division of the body into ele-
ments for the lumped parameter model can be done in different ways. For the multistage
approach we choose the model shown in Fig. 2. :

In the second stage of the calculation, we determine the average temperatures of the
separate organs of the peritoneal cavity and the temperatures of the blood flows between
them. A schematic diagram illustrating the division into elements and the interaction be-
tween them is shown in Fig. 3. The most difficult feature of this stage of the model is the
determination of the starting-point parameters such as the thermal conductivities and blood
flow rates. These difficulties arise because the physiological information is not perfectly
definite and also because of the complicated geometry of the system. In testing the applica-
bility of the model, it is most important to examine the effect of errors in the starting-
point data on the results of the calculation. After carrying out the second-stage calcula-
tion, the temperatures of the internal organs near the membrane are known, and thus we can
now formulate the boundary conditions for the propagation of heat in the membrane.

In the third stage the problem of calculating the spatial temperature field inside the
tissues of the peritoneal cavity membrane is studied. A distributed parameter model is used
and (11) is solved inside a bounded sector of a complete cylinder. The problem is solved
numerically, and thus nonuniformities of the anatomical structure can be taken into account,
as well as the nonuniform distribution of capillary blood flow in the membrane layers. The
previous stages of the calculation are used to specify boundary conditions on the inner sur-
faces of the peritoneal walls, and the temperature and flow rate of blood in different mem-
brane layers. After solution of the third stage, we obtain the temperature distribution om
the surface of the body, and this can be compared with the thermographic data.

The multistage approach allows one to consider models of the temperature field with a
great deal of detail, but not requiring complicated computer programs of each specific pro-
blem. The algorithm for the multistage model discussed above consists of a program for the
generalized lumped parameter model (5)-(8) and a program for the numerical solution of (11)
inside a cylinder.

NOTATION

Tis Tays Tyis volume-averaged temperatures of tissue, arterial blood, and venous blood
of the i~th element; T i“, Tin, TS t TOUt, mean flow rate temperature of incoming (in) and
outgoing (out) arterlai and venous bloo& flows of the i-th element; Qij, conductive heat
flux; Qai»> Qui» Qkis heat fluxes from blood to tissue transferred in arteries, veins, and
capillaries; Qy4, output of internal heat sources; Qeis heat flux into the external medium
due to evaporation; G413y thermal conductivity tensor; o i° Ovis Tgys thermal conductivities
between tissues and arteries, tissues and veins, and arteries and veins; Cys total heat ca-
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pacity of the i-th element; ckb, specific heat capacity of the blood; Gég, G%n, Gxi>» Gaij’

Gyii» mass flow rates of arteries, veins, and capillaries entering the i-th element; mass
flow rates of arteries and veins from ‘the j-th element to i-~th; Gy, total mass flow rate in
the blood circulation system; ma4, my4, mass of the arterial and venous blood of the i-th
element; T(x), temperature field of the tissue in the quasihomogeneous body model; A, cp,
effective thermal conductivity and specific heat of the tissue; G, mass flow rate of capil-
lary blood per unit volume; aa, ay, volumetric heat-transfer coefficients from tissues to
arterial and venous blood; qM, specific output of internal heat sources.
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